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Abstract: Multigrid methods are studied for the solution of linear systems resulting from the 9-point discretization of a 
general linear second-order elliptic partial differential equation in two dimensions. The rate of convergence of 
standard multigrid methods often deteriorates when the coefficients in the differential equation are discontinuous, or 
when dominating first-order terms are present. These difficulties may be overcome by choosing the prolongation and 
restriction operators in a special way. A novel way to do this is proposed. As a result, a blackbox solver (written in 
standard FORTRAN 77) has been developed. 

Numerical experiments for several hard test problems are described rnd comparison is made with other algorithms: 
the standard MG method and a method introduced by Kettler. A significant improvement of robustness and efficiency 
is found. 

Keywords: Convection-diffusion equation, diffusion equation, discontinuous coefficients, elliptic PDEs, 
approximation, ILLU relaxation, matrix-dependent prolongation, multigrid method, sparse linear systems. 

Gale&in 

1. Introduction 

Consider the partial differential equation 
LUG -v*(D(x) vu(x)j+b(x)~~u(x)+c(x)u(x)=f(x) (1 1) . 

on a bounded domain s2 c R2 with suitable boundary conditions. D(x) is a positive definite 
2 X 2 matrix function and c(x) 2 0. D(x), c(x) and f(x) are allowed to be discontinuous across 
internal boundaries in 9. As a conseqttence VU(X) is discontinuous, so that in multigrid methods 
the use of linear interpolation for prolongation is inaccurate and leads to deterioration of the rate 
of convergence. In [1,7,8) prolongations are introduced that are based on continuity of DVU 
instead of continuity of VU. See also [3]. 

Another possible cause of deterioration of multigrid rate of convergence is dominance of the 
convection term in (1.1); roughly speaking h 11 b II> 11 D 11, with h the mesh-size. In that case 
piecewise (bi)linear prolongation and the corresponding restriction yield coarse grid Galerkin 
approximations of the fine grid matrix in which the codiagonals dominate the main diagonal 
severely, even if the fine grid matrix is an M-matrix (cf. 1141). Coarse grid upwind finite-dif- 
ference approximation is not a sufficient remedy, because the order of approximation by which 
the coarse grid operators approximate their finer counterparts is too low (cf. [14]). The purpc-. - 

of this paper is to propose a new prolongation and restriction that overcome the two difficulties 
just mentioned, and lead to an efficient and robust blackbox multigrid code. 
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tion 2 contains a brief description of the sawtooth MGCS algorithm (cf. [5,10,12]) and 
operators used in the sections to follow. Section 3 ~l~~~__, * ‘+=flv identifies some desirable 
ng prolongations, rest&t&3 aud r;oa.tse gd Uk&c;~s. IU Section 4 +&e cause of 

failure of bihnear prolongation is discussed. A novel prolongation is presented in Section 5. 
Certain properties of the fine grid matrix are shown to be inherited by its coarse grid Gale&in 

roximation. Section 6 briefly describes the implementation and performance of a new 
m&&rid solver based on the new prolongation. Numerical results for several hard 

problems appear in Section 7 where comparison is made with an MG method based on the 
classicaI bilinear prolongation and the method introduced by Kettler (cf. [7, 52.21). In the last 
section conchtsions are summarized. 

For the description of the multigrid method we introduce the following notation: 
is the number of grids; 
is the mesh size of the finest grids; 

=2h,,,, k=l- l,..., 1, 
= i(xi, ~2) I x1 = jhk9 x2 =jh 

is the set of grid functions on sl,; 
is a prolongation operator; 
is a restriction operator; 
is the grid function which takes 

L,: uk * u, 

xEl(kk; 
is a discrete approximation of L; 
of L, with a 9-point stencil, on 

(2.1) 

the constant value (Y at all 

LI is the given discretization 
the finest grid; L,, k = l- 

1 , . . . ,1, is also a coarse grid approximation of Lk+i. 
We assume that D, c and f are discontinuous only along parts of grid lines of the finest grid 

&. The fine grid problem to be solved is 

LA =h (2 2) . 
A quasi Algol description of the “sawtooth MGCS cycle” (cf. [12,5,10]) (which is a MGCS cycle 
(cf. [2D with a single smoothing step after the coarse grid correction) is as fohows: 

SAWTOOTH MGCS CYCLE (fr, L,, z+) 

f i-1 := 4-1~ fi - Llu,) 
kfromI-lby-lto2 

:= Rk-,fk 

SOLVE ( f*, L,, u*) 
forkfrom2bylto!-1 
do uk == Pkuk_, 

SMOOTH (fkv Lk, uk) 

enddo 

*I == ui + Pp,,, 

ui9 Lb u,) 
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In the present paper the Incomplete Line LU decomposition relaxation (ILLU) is used for 
SMOOTH(=). This relaxation appears to be very robust (cf. [7]); a description can be found in 
[5,10]. Finally we give some additional notations that will be used throughout the paper. 

The grid & is split in four disjunct subgrids in the following way (a four-colour division): 

&I k #M-V = d&-l, 

f2 k&O) = (bl+hk, X,)E~kh. x,)ELnk.(oO)), 

i2 k,(O,l) = (tx,, x2+hk)E52kI(x,, x2)Eok,(O;))9 
(2 4 . 

D k,(l,l) = ((Xl+hk, x,+hk)E~k~(Xl~ x2)Eak,(0,0))= 

Furthermore, we need the following operators: Ik : uk + &, the identity operator on grid 
k, Irn: u, + t& (m, n = 0, l), a colour selection operator defined by 

(li?nUk)(Xl, x2) = 

uk(xl3 x1) if(xl~ x1) E ak,(m.n)~ 

0 iffxl, x2) e Qk,(m.n)m 

3. Relations among prolongations, restrictions and coarse grid approximations 

In (2.3) we still have to select operators Pk, &__i and L&i (k = 2,. . . , I). First of a& we 
choose 

R k-l =PZ 

and 

L k-1 = Rk_lLkPk, k = 2,. . . , 1. 

Equation (3.lb) is called coarse grid Gale&in approximation because 

(3.la) 

(3.lb) 

(L k-+k-l, vk-l k-l ) = (LkPkUk-1, pkvk-,)k vuk-1, vk-l E uk-1, (3 2) . 

with ( l , l )k the usual inner product on &. 
Useful consequences of (3.1) are: 

(i) Lk is symmetric * L&i is symmetric. 
(ii) In (2.3), if &.ltik_i =fk-l holds just before stage (7) (if k < I) or (10) (if k = I), then 

Rk-l<fk - LkUk) = %--, holds just after stage (7) (stage (10)). So, if Rk_l has ody nonnegative 
entries, then after the coarse grid correction the residual of uk consists mainly of short 
wavelength components, and can be reduced efficiently by the subsequent smoothing step. 

(iii) Once Pk has been chosen, Rk_l and L,._, follow automatically. 

4. BilEnear prolongation 

The restriction R,_, and coarse grid OperatOr &__ 1 being defined by (3.1), we still have to 

choose Pk. As a start we consider bilinear interpolation defined by 
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(p A-1 x I( ) 

4-l x ( b if x E G&(0,0) 
$u,_,(x+ &(-LO)) + h+--~(~+hk(l~ 0)) if x E Qk.(LO), 

= &_1(x + h,(L 0)) + &-&c + h,(O, - 1)) if x E ~k*(O,l,~ 

gu,_,(x+hk(-l,1))9S~k-~(x+hk!l,1)) 
+au,_l(x+h,(-l, -1))+$u,-i(x+h,(l, -1)) ifxEQ&s~l~l~o 

(4 1) l 

This prolongation can conveniently be represented by the following stencil (cf. [4, 93.4.21): 

(4 2) . 

This stencil shows the nonzero values of the fine grid function generated by prolongation of a 
coarse grid function which equals 1 at one point and 0 elsewhere. The prolongation (4.1) 
corresponds to interpolation of grid functions in Uk by a bilinear polynomial. 

For a large class of problems this prolongation is qtite satisfactory, but not so when the 
difkulties (discontinuous D or strong convection) mentioned in Section 1 occur. 

4.1. Discontinuous di@sion coefficients 

Consider problems with diffusion coefficients that have strong discontinuities (e.g., Problems 
3-g in Section 7). Let ul be an approximate solution of (2.2) after a smoothing step. Consider the 
equation on the error 

i-1 = L,q, /4.3) 

with r, the residual of ul and e, the corresponding error. The effect of a smoothing step is 
smootk~g of the residual. In case of continuous coefficients and a proper discretization (i.e., L, 
is a diagonally dominant Lmatrix (cf. [133), this coincides with a smooth e,, which can be 
approximated adequately by bilinear interpolation of a coarse grid function. Near a discontinuity 
of the diffusion coefficients a smooth rl corresponds with an e, with discontinuous gradient, so 
that e, is not approximated well enough by bilinear interpolation of a coarse grid function. This 
leads to deterioration of the rate of convergence of standard multigrid methods. Therefore, 
alternative prolongations ([1,7,8] and the present paper) are needed. 

4.2. Dominant convection (i.e. 11 b 11 h > 11 D 11) 

A dominant convection term, combined with a large number of grids may also lead to 
deterioration of rate of convergence of multigrid methods (cf. [14]). To explain why, we neglect 
boundary conditions (i.e., J2 = 2, and consider the constant-coefficient case (i.e., Lk is a 
Toeplitz matrix and can be represented by one single stencil). For a stencil corresponding with 
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the operator 2 we use the following notation: 

This stencil can also be identified with a vector (Zi) E Rg. 

Lemma 4.1. Let Lz E R9 be the stencil that represents Lk on 52,, and let Lk_ 1 be defined by (3.1) 
and (4.1). Then 

(i) a matrix G E Rg X Rg exists such that for all Lz E Rg 

Lz_* = GL,*; (4 9 . 

(ii) an eigenvalue decomposition of G exists and reads: 

G= VW-‘, G, V, ISR9XR9. (4 6) . 

D is a diagonal matrix representing the eigenvalues of G. The column vectors of V are the 
right-eigenvectors of G, the row vectors of V-’ are the left-eigemectors of G. 

v-1 = 

-- 
: 

-- 
: - 

-1 
-1 

1 

1 1 
-- -- 

4 1: -iz A 1 1 1 

0 0 -+ $ -2 0 -2 

$ A -d ST 1 -1 1 

0 

0 
1 
a 

0 

-- : 

0 : -- 

- 

L -- 
6 : 

+ -4 

0 1 
0 1 

0 

f 

A 
0 

A 

-- : 
i 
0 

-1 
0 
1 
0 

-- 
1: 

-- 
1’8 

-- : 
-- 

: 
4 -) 

0 1 
1 -1 
0 1 
1 1 

0 -- : 

B : 

; -5 

__ : -- : 

0 -1 
0 1 
1 1 
1 1 

?I -4 

0 -_ : 

(4 3 . 

(4 8) . 
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0 

1 
2 

2 

4 

. (4 9) . 

Part (i) follows fronn a tedious evaluation of (3.1) with Pk defined by (4.2) for constant 
ts. Once G has been constructed, part (ii) can easily be verified. 0 

4.2. The eigenvectors of G correspond to second-order finite-difference stencils. With V,] 
the jth column of V, we see 

a2 
v,1* - -h2- a2 a2 

ax; ’ 
V$ - -h2- 

ax,2 ’ v3* - -h2ax ax ‘) 
1 2 

V,J-h& 
2’ 

v,s* -h& 
1 

“6* - identity, 

VT - -2h3 
a3 

y8’ - -2h3 
a3 

ax, ax; ’ ax1 a$’ 
V.9' - h4 a4 

ax: ax; ’ 

e-g., 

Note that yr,..., V,z can be obtained by discretizing by means of bilinear finite elements on a 
regular grid with meshsize h. 

By repeatcAy applying (3.1) (and (4.1)) we obtain a coarse grid operator I+,,, n > 0, for 
which the fokxving holds. 

Lkfn = GnLz = i di”o[iV,i, 
i = 1 

where di is the ith eigenvlue of G and a: 5 r/ l L,*, where Wi denotes the i th row of V- ’ and l 

denotes the usual inner product on 
. 
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This can easily be seen because ( V,i}i=1,_._,9 is a linear independent set of vectors and L; can 
be written as 

Lk* = i OliV,i, 
i I 1 

with ai, i=l,..., 9, uniquely defined. 

Now we consider the case of a simp% convection-diffusion equation for which a, = 0 aad 
a4 # 0 or as # 0. Because of Remark 4.3 it is obvious that the co-diagonals increase rapidly as n 
increases and hence diagonal dominance is lost. 

Example 4.4. Let 0 0 0 
Lk*= 

[ 1 -1 10; 
0 0 0 

then 

Lk* =pv,l*+ V$+&V,s*+&V,& 

and hence 

Lk*_n = iv,: + 277,: + ($)“&v,* + (a)*@*, 

so Lk*-n is dominated by the term 2”& for increasing n. This means that smoothing methods 
loose their effectiveness. The difficulty sketched in this subsection will also be overcome by 
means of the prolongation operator to be proposed. 

5. Matrix-dependent prolongation 

5.0. Introduction 

We introduce the following prolongation: 

(p kUk-l x )( ) 

‘“k-lb) if x E s2k,(0,0J 9 

bkbbk-lb + hk(-l, O)) + ak(X)Uk-I(X + hk(l, O)) if x E s2k,(1.0), 

bk(+k-I(X + hk(O, 1)) + ak(+k-,fx + hk(“, - l)) if x E s2k,(0, 11, 

= bk(X)Uk_l(X + hk( -1, 1)) + c,(+,-1(x + hk(l, 1)) 

(5 1) 
. 

I +dk(x)uk-l(x + 1 h,(-1, - 1)) + ak(x)uk& + hk(f, - 1)) 
if x E ak,(l. 11, 

ak, bk, ck, dkE ukg 

This prolongation has the stencil 
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U&(X + h,C-1, 1)) ak(x + hk(O, i)) dk(X + hk(L 0) 
ak(x+hk(-LO)) 1 bk(x + h,(l, 0)) 

ck(x+hk(-1, -1)) b,(x+h,(O, -1)) b,(x+h,(l, -1)) 1 3 x E Ink-v (5 2) . 
Because of (Ma) the stencil (5.2) also gives the weights of the restriction R,_, at x E &+ The 
original matrix L, is assumed to correspond to a 9-point discretization. Because of (5.2) and 
(3.la) all L,, k < I, are 9-point discretizations as well. To complete the description of Pk in (S.l), 
(5.2) we have to determine the WtightS ak9 bk, c,, dk. This will be postponed until %CtiOll 5.3. 
Beforehand, we show in Section 5.1 that a conservative discretization on grid & results in a 
conservative discretization on grid &&_r, provided that grid function lk_l is prolongated into 1, 

by pk- 
In Section 5.2 2 particular prolongation of type (5.2) is introduced for the case of L having 

constant coefficients. The stencil of this prolongation depends on two parameters: X E IR which 
makes the prolongation asymmetric in the x,-direction and p E R which makes it asymmetric in 
the x,-direction (the case X = p = 0 is the conventional bilinear prolongation). If convection is 
dominant, the difficulty of lack of diagonal dominance of the coarse grid matrix is met by 
choosing X # 0, p f 0 by which automatically diffusion is added to the matrix at its evaluation 
(3.lb) (this is proven by Lemma 5.4). Finally, in Section 5.3 the prolongation is presented which 
has been implemented into the new blackbox solver. It is destined primarily for the case of 
discontinuous diffusion coefficients. Firstly, the prolongation at the subset &&tI,I) is defined by 
the discrete homogeneous equation, this is done in Section 5.3.1. Secondly, the prolongation at 
Q k/1.0) and ~k,(O.l) is defined in Section 5.3.2. The weights of the prolongation at these points are 
derived as follows: 

(i) decompose the matrix into its diffusive and its convective parts; 
@) let 5 E ak,(l.O) (Or Qk,(OJ)) be a point where a coarse grid correction has to be interpolated, 

then derive the different diffusion coefficients in the neighbourhood of 5; 
(iii) based on the local character of the reconstructed differential equation, use some heuristic 

arguments to find appropriate prolongation weights at 5. 
In Section 5.3.3 the connection is shown between the prolongation for constant coefficients 

defined in Section 5.2 and the one defined for variable coefficients in Section 5.3. Here, by 
Lemma 5.15 it becomes clear that the prolongation in Section 5.3 is applicable also for constant 
coefficients and dominant convection. 

5.1. Consmation of properties of the fine grid discretization on the coarse grids 

In this subsection it is shown 
Lk, k < 1, if a condition On ak, 
formulated. 

that some important properties of L, may be inherited by 
bk, ck, dk is satisfied. For that purpose some lemmas are 

Lemma 5.1. With Pk defined by (54, it satisfies 

ak(x) + bk(X) = 1 if x E &,(I ,O) Or x E ak (0 1) ’ 
l 9 

Uk(X) + bk(x) + ck(x) + dk(x) = 1 if x E &,(l,l)= 
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Proof. Follows by straightforward computation. q 

Lemma 5.2. Assume Pklk_l = 1,. Let fk_* = R,_,f,. Then fk_l and L,_, have the following 
properties : 

(i) the sum of elements of fk_ 1 is equal to the sum of elements of fk; 
(ii) the sum of all entries of matrix L,_ 1 is equal to the sum of all entries of Lk; 

(iii) if every row sum of matrix L, equals zero, then every row sum of L,_ 1 equals zero; 
(iv) if every column sum of matrix Lk equals zero, then every column sum of Lk_ 1 equals zero. 

proof. 
(i) lI__,f,_, = C-IRk-lfk = (PA-*)*fk = Cfk. 

(ii) l;-lLk_Jk--l = l~_,R,_,L,P,lk_I = ( Pklk_I)TLklk = l;L$,. 
(iii) L,_J,_, = Rk--lLkPklk-l = Rk-1( L,l,) = Rk_& = Ok_,. 
(iv) LE_,1,_, = ( Rk-ILkPk)Tlk-I = Rk-lL~Pklk-l = R& I$,) = Rk_lOk = Ok-l. 0 

Part (iii) and (iv) can easily be generalized to the following lemma. 

Lemma 5.3. Let 

LkWW9 1) L&)(09 1) Lk(x)(L 1) . 

LkbEl9 0) Lkbm 0) Lk(XNL 0) 

L,W(-19 -1) Lk(XM4 - 1) L,(x)(l, -1) 

I (5 3) . 

be the stencil of L, at x E Q. Let c,(x) = x& -&_,L,(x)(i, j) (i.e., the row sum) and let 
c;(x) = &_&-&(x)(i, j) (i.e., the column sum). Let x0 E s2,_, and S(+) = (x, + 

h,(& j) 1 1 i 1 < 1, 1 j 1 < 1). If (PkIk-l)(~) = 1 for all x E S(x,J, then the following holds: 
(i) C,(x) = 0 for all x E S( x0) a C,_,( x0) = 0; 

(ii) C;(x) = 0 for all x E S(xO) =3 CL_,(x,).= 0. 

Proof. Sindar to Lemma 52(iii), (iv). q 

The properties (i), (iii), (iv) mentioned in Lemma 5.2 make sense e.g. for Problems 1, 4, 6 in 
Section 7, which are pure diffusion problems with homogeneous Neumann boundary conditions 
only. By a conservative discretization, the linear systems L,ut = ft that arise have the properties: 
- L, is symmetric, 
- the sum of elements of ft vanishes, 
- every row sum of L, equals zero, 
- every column sum of L, equals zero. 

For all k < 1, let Pk be such that P&r = lk. Because of consequence (i) in Section 3 and 
Lemma 5.2 it is clear that the properties of L, and ft mentioned above are inherited by L, and 
fk for all k < 1. (For problems with Dirichlet boundary conditions, Lemma 5.3 can be applied.) 
Of course, all L,, k < 1, are singular. However, all systems Lkuk = fk are solvable because for 
each k, fk is within the range of L,, i.e., the sum of its elements equals zero. The solution is 
unique up to a constant. 

We conclude that for systems of the above-mentioned type it is favorable to use prolongations 
which satisfy Pklk _ I = 1,. 



P.M. De Zeeuw / ibiatrix-dependent prolongations and restrictions 

-dependent prolongation fot the constant -coeficietzt case 

that L has constant coefficients; then the prolongation 

with A, p E [ - a, + $1 is cons&red for grid functions on &Ik - a&#. Both A and p remain to be 
chosen. 

li) E Lz denote the stencil of Lk. Possible choices for X and c_d are: 

t coincides with the prolongation used in [7] except for 1(2kx1,1j points); 

(I, + 14 + 17) - (13 + la + I,) 

@’ A= 2((11+14+1,)+(1,+16+19))’ 
p analogously 

(this chncides with the prolongation used in [3] except for the f2kx1,11 points); 

(fi) 
H’4- Lk* 

A= 4w;.L: 9 
Ws‘Lk* 

cc= 4w,.L; 
. 

with Wi and l as in Remark 4.3. Here the asymmetry in the prolongation is proportional to the 
ratio of convection and diffusion in the x1- and x,-direction, respectively. 

Clearly9 Pk satisfies the condition that P,&_, = 1,. For (5.4) the following lemma holds. 

5.4. (i) A matrix G(X, p) E gP9 x R9 exists such that 

L;-l = G(A, &L; 

(ii) With V defined by (43, 2, = T’G(h, p)V is given by 

jj= 

1+4x2 0 0 0 0 l 8X2 0 0 0 

0 1+4p* 0 0 0 ;p* 0 0 0 

0 0 10 0 2x/A 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 4 0 0 0 

0 0 0 +A/& $A* 0 i+2A2 0 0 

0 0 0 h2 %a 0 0 ++2p* 0 

+P* +A* g/L 0 0 0 0 0 ;+A* + pz 

(5 5) . 

Part (i) follows from a straightforward but tedious evaluation of (3.1). Once G( A, p) has 
tructed, part (ii) can easily be verified. @ 
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This &h, p) is a generalization of D in (4.9) for the case (X, p) f (40). The columns of b 
describe how a stencil corresponding to vector vVi, i = 1,. . . ,9, is transformed, e.g., 

WV P)V*, = (1 + 4A2) 29 + $F2V,$, 

G(X9 ho = 2~ + +Xpv,, + $~~v,~, etc. 

Example 5.5 (Cf. Example 4.4). Let 0 0 0 
Lk*= [ -1 0 10; 1 0 0 

then 

Lk*= fv,y + v.$ + &v,g + &v,& 

and,if Lz_,,= G"(h,O)L,*, then 

Lk*_n = (1 + 4xz)“~v~ + 2”vZ + (~)“~v~ + (: + X’)“&$ . . l 

Apparently, by A f 0 extra diffusion is added to the coarse grid approximation of the stencil. 

5.3. Matrix-dependent prolongation in the tax of discontinuous coefficients 

In this subsection the prolongation is presented which has been implemented into the new 
blackbox solver. In order to complete the description of Pk in (5.1), (5.2) we specify the weights 
ak, bk, ck, dk. This is done in two steps: (i) the construction of ak, bk, ck, dk at &tl,l); (ti) the 
COnStrUCtiOn Of ak and bk at i&(1,0) and &(o,J). 

53.1. The weights at &(l,l) 
Assume that ak and b, at &(l,o) and &(o,J) have already been chosen. Let rk be the residual 

before and & be the residual of uk after adding the coarse grid correction &fk_l (see Section 
2); then the equality 

& = r, - LkPkUk-l 

holds. In order to prevent huge jumps in the I,-norm of the residual after interpolation (cf. [l, 
p.437]), we require 

I;‘(L,p,u,_,) = 0, tlu,_, E u,_,. (5 7) . 

Hence 

i i L,(x)& j)(pkuk-l)(x + hk(i9 .d) =07 x E ak.(l,l), (5 8) . 

J *= -1 i= -1 

(where Lk(x)( i, j) as in (5.3)). 
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a&)= +!&)(l, -l)+Lk(x)(O, -l)ak(x+hk(O, -1)) 

+&(x)(k 0)+(x +hk(l, o)))[Lk(x)(09 o)]-19 

bk(X)= -(~k(x)(-l,l)+~~(x)(-~,~)b~(x+h&-l,O)) 

+&(x)(0, l)b,(x + hk(O, l)))[L,(x)(O, o)] -l, 

c&(x) = - (&,(x)(1,1) + Lk(x)(l, o)b,(x + h,(l, O)) 

+&(x)(0, l)ak(x+hk(O,l)))[Lk(x)(o,O)]-l, 

dk(X) = - (L&(x)( -1, - 1) +&(x)(0, - l)bk(x + h,(f), - 1)) 

+L,(x)(-l,0)a,(x+h,(-l,0)))[L,(x)(0,0)]-19 

(5 9) . 

for x E Qk.oJ)- ( It is assumed that &(X)(0,0) f 0.) These weights are in effect computed in the 
blackbox solver. 

kMW 5.6. Lt?t X E i&J), k 6 I. If bk(x + h,z) + ak(x + h,zj = 1 for z E 

((-1, O), (1, O), (4 - l),(O, 1)) andL,(x)(O, O)#O wejind 

ak(X) + bk(x) + ck(x) + dk(x) = 1 - 
cktx) 

L~(~)(o 
9 

0) 9 

Whm? c,(x) again denotes the row stun (cf. Lemma 5.3). In addition, if &(x)(i, j) < 0 for 
ti, j) + (0, 0) and &(X)(0, 0) > 0 and both bk(x + h,z), ak(x + hkZ) 2 0, then 
%(x)3 bk(x), ckfx), d,(x) 2 0. 

The lemma folIows immediately from (5.9). Cl 

This lemma combined with Lemma 5.1 indicates that if (i) the weights of the prolongation on 
the horizontal (verticaI) coarse grid lines are defined such that on those lines lk_, is prolongated 
into lk, (ii) the row sums of matrix Lk equaI zero, then & is such that &l&l = lk, which 
genbmtes nice properties for the coarse grid systems as explained in Section 5.1. 

5.3.2. me weights at &#k,{1,O) and &,,,, 
These weights are found by an approximate reconstruction of the continuous equation at the 

grid points, using the information which is available from Lk. we proceed as follows. Let 

(5.10) 

This ~~qmm& to splitting the stencil of Lk at x E & as fohows: 

Lk(xj(i, j) = sk(x)(iV j) +Ak(X)(& j), 

Sk(x)& j) = +(&(X)(i, j) + Lk(x + hk(h j))(-i, -j)), 

Ak(X)(b j) = +( Lk(X)(i9 j) - Lk(X + hk(h j))(-% -j)), 

(5.11) 
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1 i 1 < 1, 1 j 1 < 1. It is natural to assume that Sk originates from the diffusion and zeroth order 
terms of (l.l), while Ak originates from the convection terms. Equation (5.11) is rewritten as: 

[; ; tl_ia ;; ;]+[;i if %,I* (5.12) 

We can identify the elementary stencils in the right-hand side of (5.13) as contri’butions from a 
symmetric differential operator. Thus, schematically, the diffusion coefficients of (1.1) in the 
different regions near x are found to be as in Fig. 5.1. 

The coefficient C accounts for the zero-order term. Note that the set of stencils at the 
right-hand side of (5.13) forms a basis of R9, hence the coefficients s147 etc. are uniquely 
determined. Similarly, the coefficients of h( a/ax,) and h@/&) are approximated by 

Cl = ( a3 + a6 + a,) - (a, + a4 + a,) (averaging out the x,-dependence), (5.15) 

c2 = (a, + cl8 + as) - (a, + a2 + u3) (averaging out the x,-dependence). (5.16) 

As far as possible we try to incorporate the information, gathered in (5.11)-(5.16), into a proper 
definition of the weights ak and b, at s2k,(l,-,J and S2k.(0,1I. The same procedure is followed in the 

-s147 

x 

a* -A*- 
ax: 

82 i.2 82 

-s7a9 

$7 -s9 

x x 

-+69 ’ . 

-s123 -S1 s3 

a2 ,h*- 
ax,ax2 

(5.14) 

Fig. 5.1. 
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hQrizsntal and the vertical direction, therefore we restrict the description to the weights at 
We 6n1pli.Q the notation and write for some x E Qk,(l,O+ 

(p kUk--l x I( 1 = WwUw + WEUE, (5.17) 

with tcw= U&X + h,(l, 0))~ UE = u&x + hk( - 1, 0)). By (5.17), uk(x) is t0 be computed 
from tlw and uE. To determine the weights ww and WE we first formulate some guidelines for 

construction: 

0 i wW+WE=f- ckfx) 
&(X)(0, 0) and ww’ wE2 O” (5.18) 

In Sections 5.1 and 5.3.1 we have seen that for any problem with ck( x) = 0 we should satisfy 
ww+wu =landw,, WE 2 0. Another case of interest is 

Lkfx)ji, i) 
=0 if(i, j)+(W), 
#O if@, j)=(o,o), 

in which case we should have ww = WE = 0. This is an optimal choice because a (local) relaxation 
sobxs the equation at x at once and any nonzero coarse grid correction would be harmful. 

[ii;, In the one-dimensional case the prolongation should reduce to interpolation by means of 
difference operator. This is achieved as follows. Let 

s4= -d,, Q4 = -SC*, 

ss=dw+dE+C, 

$j = -d,, ‘6 = +$c,, 

s- = a f j=O ifi< or 06; 

then take 

dw + +c, 
ww= d,+d,+x’ 

EE - SC, 

wE= d,+d,+x’ 
(5.19) 

otice that if c, = 0 and C = 0, then these expressions reduce to the formula given by 
Hackbusch [4,910.3.11). In the one-dimensional case, (5.17) results in ~~“&Pkz+I = 0,. 

With (i) and (ii) in mind, we propose the fohowing formulas for ww and WE_ Let 

dW =m~(Is,,,L PlL ls7lh d,=m=(ls,,I, Is319 Isol)~ 
4 =max( IS789 1, Is7 1, Iss 0, d,=m=( Is**3 I, 1% I, ML 

(5.2Oa) 

(Pm+, II-q), 

Cl 

+d +d +d ’ W E N S 

Then we choose 

w,. = min(u, max(0, w&)), 

WE = min( O, max(O, w;)), 

(5.2Ob) 

(5.20~) 

(5.20d) 

(5.20e) 

(5.2Of) 
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D(x) = 

Fig. 5.2. D(x) for Example 5.10. 

t=i 

DR 

E 

i 

(cl, c, $3 sijk as defined in (5.13)-(5.16)). It is easily verified that (5.20) satisfies the require- 
ments (i) and (ii) above. 

Remark 5.7. ww + WE = 0. 

Remark 5.8. (52Ob) and (52Oe), (5.2Of) have safeguards to enforce that 

O<ww<a<l, O<w,<a<l. 

If Lk is a diagonahy dominant L-matrix, then these safeguards are superfluous. 

Remark 5.9. In (5.2Oa) also the coefficients of the mixed derivative are involved (see (5.14)). This 
is done because of the following heuristic argument. Consider d,; if s7 (or si) is not zero this 
implies a coupling between the values of u in the north-west (south-west) quadrant and therefore 
between uw and u at 5. Similar arguments hold for dE, dN, d,. These couplings are incorpo- 
rated in (5.2Oa). Experiments indeed showed that neglect of 1 s1 1, 1 s7 1, I s3 I, I s9 I causes slower 
convergence of the multigrid algorithm. 

We conclude Section 5.3 with examples of weights on horizontal gridhnes resulting from the 
description in this section, for some special cases of interest. 

Example 5.10. Let Lu = - V (D Vu), see Fig. 5.2. (For the discretization of L, cf. [l].) Then 

(p kUk-l )(5) = WwUw + WEWE, 

with 

DL DR 

ww= D,+DR’ wE= D,+DR’ 

Example 5.11. Let 

Lu= -<Abu+cosar 
th au 
~+sina~, t:>o. 
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Let & be given by the stencil 

r 0 i 
-cos a-e cosa+sina+4~ -c , Ofa<+% 

0 -e 0 I -sina-e 0 

so that 

r 0 -+.na-e 0 

SJ = 

I 

-3 cos a-E: cos a + sin a + 4~ -$cosa-e and 

0 -$sina-c 0 1 

0 +$ina 0 

-fcosa 0 ++cosa 1 . 

0 -$sina 0 1 

A,= 

Then 
1 1 cos a 

ww=-Z+Z cosa+sha+4~’ 

1 1 cos a 
“E=‘Z-i: Zsa+sina+4e’ 

5.12 Let Lu = -e Au + lb, 4 > 0. Let & correspond to the stencil (h = 1): 

[ 

-c -c 
-E *E-J6 -E . -c -c -c 1 Then 

WW 
=wE=+ 

5.13. Let 

Lti= 
a2 

-Au * a ax, ax, a 

and let LI correspond to 

-;:a 
-l+a 0 
4-a -1 , O<a<l (Cf. [4,p.217]). 

-1 0 I 

Then WW=WE=$. 

5.14. Consider the stencil 

XT=1 &CO, for tEQk(,o, and with L,= I . 
in the following situation: 

S’. This situation occurs on coarser grids ( k < I) 

LE -v (m), 
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with 

x1 <& and x2>2,, 
elsewhere, 

w,=l-w,,,, if I&,-+1 > -b,-i&-6,. 

5.3.3. The constant-coefficient case revisited 
Assume that L has constant coefficients with dominant convection. We pose the question how 

the prolongation as described in Section 5.3.2 behaves for this case. To answer this question it is 
shown that there is a link with prolongation (5.4) which could be a.na@ed well with respect to 
the procreation of coarse grid matrices. Let Lk be defined by the stencil l, !8 z9 

Lk*E 

[ 1 14 I, la 9 (5.21) 

II 12 13 

with constant coefficients, i.e., independent of x E &. Let Pk be defined by 

(5.22) 

with constant coefficients, i.e., independent of x E Q-r; (Y, /I, y, 6 are (again) defhed by 
solving the homogeneous equation at the s2kx1,1J p oints, X and t_l are still free to be chosen. 
Define e, = Z&, i = 1,. . . ,9. 

By means of (5.9) we obtain the equations: 

a=- (e3 + $2 + &) + e2X - e6& p = - ( e7 + +es + +e8) - e8X + e& 
(5.23) 

Y =:- (eg+ae,+ae,)+e,X+e6l.c, S=--(e,+~e2+~e4)-e2x-e4~. 

Lemma 5.15. (i) Prolongation (5.221, (5.23) is identical to prolongation (5.4) if the system 

e3+ie2++e6++= ( e2 + # + (-e6 - i)p, 

e7+&?4++e8+$= -e8 ( - +)A + (e4 + i)p, (5.24) 

eg+&++es+$= (e8+3)x+(e6++)b 

e,+fe2++e,+$= -e2- ( +)A+(-e4-3)~~ 

is solvable for X and p; 
(ii) if Efz,li = 0, then system (5.24) has rank < 3; 
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ET=, Ii = 0 and sptm (5.24) is solvable, then 

11 + I, + 1, + ++x= 1, lfj 19 + 
(I,+l~+l,)+(l,+l~+l~)’ 

f-x= 
(l*+l~+l,)+(l~+l(j=7 I,) 

i+p= 11 + l* + 13 -l--p= 1, l* 19 l 

+ + 
(l*+l**l~)+(l,+l*+l~)’ (l*+l,+l,)+(l,+l*+l,) 

Part (i) follows immediately from (5.4) and (X23), part (ii) follows from adding the four 
equations, part (iii) is straightforward. IJ 

5.16. Let 

Lz=[z 1 51 or Lt=[$ i j, 

with &li = 0 and 0 6 T < 1; then system (5.13) is solvable. 

The present lblackbox Solver consists of a preparational stage and a cycling stage. An outline 
of the cycling stage usicg the sawtooth schedule can be found in [12, p-6171, [lo, p.1481. The 
preparational stage is formulated as follows (L, is the matrix supplied by the user): 

(1) fork from 1 by -1 to2 
(2) do Compute and Store weights ak, bk, c,, dk 
(31 compute and store &_l = Rk_&Pk 
(41 enddo 
(5) for k from 1 to 1 

(6.U 

(6) do compute and store ILLU-decomposition of Lk 
(7) @zmMo 

If &#k is a rectangular NX, * NY, grid, then the storage requirements for the weights are 
2 * Nx, * NY, reals and for the ILLU-decomposition 3 * .&v& * NY, reals. 

The efficient implementation of the Gale&in approximation Lk_ 1 (line (3) of (6.1)) is a 
r~ontrivial task. An important equality is 

Rk-&& = R,-I(& - I,“)&& (6 2) . 

which follows immediately from (5.7). By means of (6.2) the cost of computing Lk_, can be 
reduced with about 35 percent. If well implemented, the cost of computing Lk_l becomeS 
asymptoticahy 29.25 * NX, * NY, muh.iplificationS and 26.25 additions. On a vector computer: 

$NY,(117 VFCTOR( *) + 105 VECTOR( +)) plus, for the CYBER 205, 

iNYk 179 GATHER (length(VECTOR) = @X,, stride equals 2). 
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Table 6.1(a) 
CPU-times (seconds) on the CYBER 750 (NOS/BE 1.5 LEVEL 587, FI’N 5.1+564 compiler) 

19 

1 4 5 
NX/ = NY, 33 65 

Weights ak,bk,ck,dk 0.040 0.158 
Gale&in approximations 0.048 0.170 
ILLU-decompositions 0.041 0.150 
1 MG-cycle 0.048 0.155 

Table 6.1(b) 
CPU-times (seconds) on the CYBER 205 (one single vectorpipe, FORTRAN 200 CYCLE 654A compiler) 

1 4 5 6 
NX, = Nq 33 65 129 

Weights 0.008 0.031 0.120 
Gale&in approximations 0.015 0.037 0.102 
ILLU-decompositions 0.011 0.031 0.107 
1 MG-cycle 0.011 0.033 0.105 

Table 6.1(c) 
CPU-times (seconds) on the CRAY X-MP-24 (COS 1.16, CFT 1.15 compiler) 

1 4 5 6 
NX, = NY, 33 65 129 

Weights 0.004 0.015 0.054 
Gale&in approximations 0.002 0.007 0.016 
ILLU-decompositions 0.004 0.012 0.037 
1 MG-cycle 0.004 0.014 0.043 

The code, called MGD9V, has been written in standard FORTRAN 77 and contains no 
machine-dependent features. Tables 6.1(a)-6.1(c) show CPU-times on different machines for the 
various tasks of MGD9V on all levels 1,. . . , I together. 

Note that the computation of coarse grid matrices (Gale&in Approximations) is extremely 
efficient on the CRAY. The reason is that the performance of the CRAY is not affected by 
strides > 1. 

The question arises how MGD9V performs in comparison with a program based on the 
classical bilinear prolongation and restriction. Let MGSYM denote the program equivalent with 
MGD9V but based on (symmetric) bilinear prolongation and restriction. We find: 

(i) 1 MG-cycle of MGD9V costs the same as 1 MG-cycle of MGSYM; 
(ii) the preparational stage of MGD9V takes (less than) the work of 1 MG-cycle more than 

the preparational stage of MGSYM; 
(iii) for easy problems MGD9V takes the same number of MG-cycles as MGSYM, for 

difficult problems MGD9V takes considerably less MG-cycles than MGSYM. 
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me first statement is obvious, the third statement follows from the experimental results in 
Section 7. With respect to (ii) we remark that the ILLU-decompositions will cost the same in 
both programs, the G&.rkin approximations take fewer operations in MGD9V than in MGSYM 
but in MGSYM no weights have to be computed. 

bother algorithm with similar objectives as MGD9V, in particular for diffusion problems, is 
an algorithm published by Kettler (cf. 17, 92.21). We made our own implementation of his 

to which we refer here as MODMG. Results of experiments for several problems with 
MGD9V and MODMG are exhibited in Section 7. Compared with the cost of a 
of MODMG, the cost of a MG-cycle of MGD9V can be slightly less because of a 

cheaper evaluation of the prolongation at the 6!k,(1,1j points. 
The additional preparational work in MGD9V compared with MODMG, consists of the 

computation of the prolongation WEIGHTS which takes the amount of work of about one 
MG-cycle. However, the computation of the Gale&in approximations is probably more efficient 
in MGD9V. 

In this section we demonstrate the robustness and efficiency of MGD9V and make a 
comparison with MGSYM (see Section 6) and MODMG, which is a program that follows the 
description of Kettler (cf. [7,§24). Note that several of the test problems in this section are pure 
diffusion problems with Neumann boundary conditions, a full description of the discretization 
ca__ be found in [l]. This type of problem results in a linear system with a singular matrix, the 
system is nevertheless solvable. This phenomenon is inherited by the coarse grid systems as was 
shown in Section 5. Therefore on the coarsest grid no direct solver can be used. Instead, 8 ILLU 
relaxation sweeps are applied. In the following, each testproblem is briefly described. The 
performance is measured by the number (n) of MG-cycles needed to reach a given reduction 
(red) of the I,-norm of the residual, i.e., 11 ,(“I 11 2 ( red* 11 r(O) 11 2, where rtk) denotes the residual 
after k MG-cycles. All testproblems are taken from the literature, except Problem 4. For 
Problems l-8 the initial guess is the zero solution, for Problems 9-11, on the inner area the 
initial guess is the zero solution and the initial solution on the boundary is given by the Dir&let 
condition_ 

1. Poisson. 
-Au=fon $2, 
nvu = 0 on aJz (Neumann), 
Q = (0,32) x (0, 32), 
f(% 8) =f(W 8) =f(% 24) = f(24,24) = -2, f(16,16) = 8, f = 0 otherwise. 

1 Grid 

4 33 x 33 

red 

1o-g 

MGSYM MGD9V MODMG 

n n n 

7 7 7 
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x 

Fig. 7.1. Problem 3. 

Problem 2. Hackbusch (cf. [4, p.2171). 

a2 
-Au+ ax, ax2u=0 on D, 

s2 = (0,l) x (0,l). 

x 
Fig. 7.2. Problem 4. 

EIiminated DirichIet boundary conditions: u= sin( ?TXl) + Sin(lOTX,) + sin( Trx2) + sin(lO9rx,) 
on W, (special discretization cf. [4, p.217, 510.3.21). 

I Grid red MGSYM MGD9V MODMG 

n n n 

4 33 x 33 1o-g 6 8 19 

Problem 3. The inhomogeneous square (see Fig. 7.1). 

-vDvu=l on 9, 
D-5 outside the shaded region, D = 3 l lo4 inside the shaded region, 

Dan -z a24 + %4=0 0nM ¶ 

D = (0,24) x (0,24) (cf. [l, p.4501). 

1 Grid 

4 25 x 25 

red MGSYM MGD9V MODMG 

n n n 

1o-g 52 8 10 

Problem 4. The inhomogeneous diamond (see Fig. 7.2). 

-vDvu=Oon 0, 

D = 1 outside the shaded region, D = lo5 inside the shaded region. 
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= 0 on a&? (Neumann), 
0,32) x (0,32), 

8,8) =f(24,8) = f(8,24) =f(24,24) = - 2, f(16,16) = 8, f = 0 otherwise. 
The corners of the shaded region lie at (16,8), (8,16), (24,16) and (16,24). At (ih, jh) E 
- ask the stencil of Ll is given by 

[ 

-d(& $)-d(-4, _)) 
-d(-;,a,-d(-+, -$) - SUM -d(;, :)-d(;, -t) 1 , 

- d(t, -$)-+a, -;) where SUM is the sum of the off-diagonal elements and d( p, q) is defined by d( p, q) = 
W((i + p)k (i + NO= 

1 Grid red MGSYM MGD9V MODMG 

n n n 

4 33 x 33 lo-* 18 7 7 

5. The inhomogeneous staircase (see Fig. 7.3). 

- VDVU =f on Q = (0,16) x (0,16). 

D = 1 and f= 0 outside the shaded region, D = IO3 and f= 1 inside the shaded region. nvu = 0 
onx,=Oandonx, = 0 (Neumann), and 

au 
Ds+ftl=O onx,=16andonx2=16 

(cf. [l, p.453D. 

1 Grid 

3 17X17 

red MGSYM MGD9V MODMG 

n ra n 

1o-9 130 9- 10 

x 

Fig. 7.3. Problem 5. 

x 

x 
Fig. 7.4. Problem 6. 
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Problem 6. Stone’s problem (cf. [ll]) (see Fig. 7.4). 

-vDVu=fon D= (0,30) X (0,30), 

nvu = 0 on aa (Neumann),. 

, 

Region 

d 11 

d22 

A B C D 

1 1 lo5 0 
1 lo5 1 0 

1, f(23, 4) = 0.6, f (14, 15) = - 1.83, f(3, 27) = 0.5, f(27, 27) = -0.27, f = 0 other- f(3, 3) = 
wise. 

For the region 52 a 31 x 31 grid is used. In order to be able to use 4 leveis in the multigrid 
algorithms, virtual grid points are added to extend the grid to obtain a 33 x 33 grid (padding). In 
these points the difference stencil is given by 

[ 0 0 0 0 0 1 0 0 0 I 
and the right-hand side is zero. Of course, these equations do not influence the solution of the 
originaI discrete problem. Note that for MGD9V these points correspond to zero weights, so that 
also on the coarser grids these points do not couple with pcints in 9. 

1 Grid 

4 33 x 33 

red 

1o-8 

MGSYM MGD9V MODMG 

n n n 

39 8 8 

x 
Fig. 7.5. Problem 7. 

D - ID 

D- 1 

D- 100 

D- 1000 

b 

Fig. 7.5. Problem 8. 
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7. Kershaw’s problem (cf. [61) (see Fig. 7.5). 

-vDvu+u=f on 82, 

= (fO,5Oj x (0,2s)) u ((0325) x (2% 5O)j, 
tj on ((xl, 25) 125 < xl < 50) and on ((25, x2) I25 < x2 < 50), n VU = 0 elsewhere 

discontinuously from the outer shell to the inner shell with the values 10w4, 10m2, 
2) = 10’9 -x2)/245+2_ 

With the same procedure as in Problem 6 the grid is extended by padding to a 65-65 grid. 

1 Grid red MGSYM MGD9V MODMG 

n n n 

5 65x65 lO-9 26 10 24 

8 The four-corner junction (see Fig. 7.6). 

-VDVu=f on 52= (0,64) x (0, &I), 

324 

Dz +&=O onaS2, 

D = 10, f = 1, D=102, f=O, 

Grid red 

65 x 65 

Erac5= 
(3Z32) 

::;,;o,o, 

E;i5= 
(3332) 

:: 

10 yo’ 
(xcgw) = (3&31) E P 
65x65 10 ?f*” 

MGSYM MGD9V MODMG 

n n n 

14 14 6 

14 7 6 

15 12 7 

15 7 DIV 
(xc&) = (33931) E la,,, 

l 
1) 

DIV denotes divergene. 

9. Convection diffusion (see Fig. 7.7). 

at4 
B-E AU+&, x2)37 + b(+ ~2) a 

1 
s=o 0n9=(0,1)x(0,1), 

u(q, ~2) = si@q) + sin(~x,) + sin(l3lrx,) + sin(l%rx2) on a&! (Dir&let boundary condi- 
tions), a( x1, x2) = (2x2 - l)(l - x,“,, b( x1, x2) = 2x,x,( x2 - l), E = lo-‘. 

The characteristic directions which correspond to a( 0) and b( l ) are shown in Fig. 7.7. 
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0 b 

Fig. 7.7. Problem 9. Fig. 7.8. Problem 10. 

The problem and its discretization are the same as used by Ruge and Wiben [S, p.2031. 

Grid red MGSYM MGD9V MODMG 

n n n 

33 x 33 lo-* 3 3 3 
65 x 65 lo-* DIV 3 4 

129 x 129 lo-* 4 DIV 

Problem 10. Convection diffusion (see Fig. 7.8). 

&d 
--E Au + ah +)ax, + b(x,, ~2) a %=O on&!=(O,l)X(O,l), 

a(+ ~2) = sin(vx,) + ~in(l3vx,) + sin(‘~~x~) + sin(l37~x,) on iW (Dirichlet boundary condi- 
tions), 

a(+ ~2) =4x1(x1 - l)(l - 2x,), b(x,, x2) = -4x,(x, - l)(l - 2x,), c = 10-5. 

The characteristic directions which correspond to a( 0) and b( 0) are shown in Fig. 7.8. The 
problem and its discretization are the same as used by Ruge and Stiiben [9, p.2031. Notice the 
stagnation point and notice that merely by xumerical diffusion the solution of the discrete 
problem is unique. 

Grid red MGSYM MGD9V MODMG 

n n n 

33 x 33 lo-* 7 15 25 
65 x 65 lo-* 11 17 39 

129 x 129 lo-* 24 22 DIV 
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0 
Fig. 7.9. Problem 11. 

i 

11. Convection diffusion (see Fig. 7.9). 

at4 
-c Au + a(x;, xz)q + b(xp ~2) ax2 *=o 0n82=(0,1)x(0,1), 

a(+ x2) = sin(~rx,) + sin(l3nx,) + sin(~x,) + sin(l31~x,) on aQ (Dirichlet boundary co&i- 
tions), 

1 
((2x2 

z x1, x2 = ( 
i 

- 1)(1 4:) ifx,>o, 2x,x,( X-J - ‘1.) if x, > 0, 

(2 x2-1) C&O, 
b(x,, x2) = 

0 ifJz,<O, 

where Zr = 1.2x, - 0.2, Q = lo-‘. 
The characteristic directions which correspond to a( 0) and 6( 0) are shown in Fig. 7.9. The 

problem and its discretization are the same as used by Ruge and Stiiben [9, p-2031. Notice the 
presence of a stagnation point. 

Grid red MG!SYM MGD9V MODMG 

n n n 

33 x 33 1o-8 3 3 3 
65 x 65 1o-8 DIV 4 4 

129 x 129 1o-8 5 DIV 

In this paper the attention has been focussed on improving the usual geometric multigrid 
met&I for solving the linear systems that arise from 9-points discretizations of elliptic PDEs in 
two dimensions. Improvement is achieved by automatic adaptation of prolongation and restric- 
tion operators to the particular discrete problem to be solved. Certain properties of the fine grid 
system are shown to be inherited by its coarse grid Gale&in approximation. The resulting code 



P.M. De Zeeuw / Matrix-dependent prolongations and restrictions 27 

MGDBV is both more robust and (for hard problems) far more efficient than a standard 
multigrid code based on the usual prolongation and restriction obtained by linear interpolation. 
The cost of a MG-cycle remains the same, and only some additional work is required in the 
preparational phase. This additional work is compensated by far by the decreased number of 
iterations. Also, if compared with the algorithm of Kettler (cf. [7]), MGD9V turns out to be an 
improvement. The code (written in ANSI FORTRAN 77) performs well also on vectorcomputers 
and especially on the CRAY. It is difficult to make a comparison with algebraic multigrid 
methods. If we consider AMGO (cf. [9]), then, on the one hand, MGDYV will solve many 
problems from a large class (including hard problems) within the set-up time of AMGOl. On the 
other hand, AMGO is able to cope with larger stencils and irregular grids. 
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